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In this paper we propose new finite difference numerical schemes for hyperbolic
conservation law systems with geometrical source terms. In the development of
the new schemes we use the essentially nonoscillatory (ENO) and weighted ENO
(WENO) reconstruction, developed by Harten, Osher, Engquist, Chakravarthy, Shu,
and Jiang, and the idea of the balancing between the flux gradient and the source
term, introduced by Bermùdez and Vázquez. Actually, the new schemes are ENO
and WENO schemes with the source term decomposed, i.e., the ENO and WENO
reconstruction is applied not only to the flux but to a combination of the flux and
the source term. In particular, when new schemes are applied to the shallow water
equations the new schemes verify the exact conservation property (C-property). We
present the algorithm, the proof of the exact C-property, and numerical results for
several test problems. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

For the numerical approximation of the source term in hyperbolic conservation laws, there
are two main approaches: the splitting and the upwinding. The first consists of splitting the
nonhomogeneous hyperbolic conservation laws system into a homogeneous system with
the same flux term and an ordinary differential equations system with the source term on
the right-hand side. In the second approach, instead of pointwise evaluation of the source
term, the source term is upwinded in the same way as the flux term. Roe [20] showed that
upwinding is a better strategy, since linear stability analysis for hyperbolic conservation laws
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with source terms shows that upwinding of the source term gives bigger stability regions
then pointwise source term evaluations [3, 20]. However, even if the upwinded approach is
chosen, there are still different additional difficulties in the source term modeling.

One possible difficulty with source terms comes from relaxation terms, i.e., where the
source terms cause a “relaxation” toward equilibrium. There the source term is stiff in the
sense that the time scale introduced by it is small compared with the characteristic speed
and some other appropriate length scale. Relaxation schemes developed by Jin and Xin
[15] lead to such nonhomogeneous conservation law systems and there are many numerical
schemes and convergence results for this type of problem, together with ideas for including
the source term in flux numerical approximations [18].

However, we are concerned with another class of problems, one with a low regularity in
the source term. This is typical for geometrical source terms that appear in conservation laws
for shallow water flows, one-dimensional open channel flows, bed-load sediment transport
flows, nozzle flows, and so forth. For that class of problems a significant result was given by
Bermùdez and Vázquez [3]. They used Q-schemes and the idea of source term upwinding,
introduced the idea of flux gradient and source term balancing, and defined the notion
of the conservation property (C-property). Up to now, Hubbard and Garcia-Navarro have
extended Q-schemes of Bermùdez and Vázquez to a second-order flux limited scheme with
the source term decomposed [9], LeVeque and co-workers have introduced a quasi-steady
wave propagation algorithm [16, 17], Jenny and Müller have modified a Rankine–Hugoniot–
Riemann solver for the presence of source terms [11], Greenberg and LeRoux have proposed
a well-balanced scheme [6], Smolarkiewicz and Margolin have extended MPDATA schemes
to systems of equations with arbitrary right-hand sides [24], Botchorishvilli et al. have given
equilibrium schemes which are a combination of the Engquist–Osher schemes and upwind
source terms [4], Jin has constructed a steady-state capturing method combining Godunov or
Roe-type upwind with source term balancing [14], Chinnayya and LeRoux have developed
a new general Riemann solver for the shallow water equations [5], Zhou et al. have used
the surface gradient method for the treatment of source terms [26], and so forth.

In this paper we propose a new set of numerical schemes that incorporate the concept
of flux gradient and source term balancing into the essentially nonoscillatory (ENO) and
weighted ENO (WENO) schemes. The ENO schemes were created by Harten et al. [7, 8],
while the WENO reconstruction was introduced by Jiang and Shu [12], as an improvement
to the original ENO idea. ENO and WENO schemes combine Runge–Kutta-type time
integration with the ENO or WENO reconstruction of the flux term and they are shock
capturing, TVD, and with a high order of accuracy [1, 13, 19, 21–23]. Our schemes can be
treated as ENO and WENO extensions for the approach of Bermùdez and Vázquez or as
flux gradient and source term balanced versions of ENO and WENO schemes. Particularly,
we use ENO and WENO Roe formulation with entropy fix (ENO-RF, WENO-RF) and
ENO and WENO locally Lax–Friedrichs formulation (ENO-LLF, WENO-LLF) for the
numerical approximation of the flux. This choice is based on the fact that in the building
blocks [1, 23] of those schemes the numerical flux of the Q-scheme can be recognized.
Since the Q-schemes of Bermùdez and Vázquez are particularly designed for conservation
laws with source terms of the type considered here, the Roe formulation with entropy fix
(RF) and locally Lax–Friedrichs formulation (LLF) are appropriate formulations for the
flux in the presence of source terms.

In the Section 2 we give a brief overview of the well-known ENO-RF, ENO-LLF, WENO-
RF, and WENO-LLF schemes for the homogeneous conservation laws in order to introduce
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the formulations and notations that we need in the presentation of our modifications. Then
in the Section 3 we expose the new schemes in a general formulation. We apply the schemes
to the shallow water equations in Section 4 and discuss other possible applications of the
approach. In Section 5 we prove that new schemes have the exact C-property when applied
to the shallow water equations. In Section 6 we present results of numerical experiments in
several test examples for one-dimensional shallow water equations, which include problems
with steady quiescent flow, steady subcritical flow, steady transcritical flow with and without
hydraulic jump, near-steady flow, and rapidly varying flow. In Section 7 we give some
concluding remarks.

2. ENO AND WENO SCHEMES

In this section we give a short overview of the finite difference ENO and WENO schemes
for both the locally Lax–Friedrichs formulation and the Roe with entropy fix formulation.
The scope of this overview is to introduce the formulations we need in the presentation of
our extension to the source term evaluation. All details about the subject can be found in
the numerous references about these classical schemes [1, 7, 8, 12, 13, 19, 21–23].

We consider nonhomogenous hyperbolic systems of conservation laws in one dimension:

∂t u + ∂x f (u) = g(u, x). (1)

Here t is the time, x is the space coordinate, u is the vector of the conserved variables, f
is the flux, and g is the source term. In fact, the dependence of the source term on the time
variable is possible, i.e., the source term can be of the form g = g(u, x, t), but the approach
that we develop is aimed at solving difficulties with geometrical source terms.

We rewrite system (1) in the form

∂t u = L(u, x, t), (2)

with L defined as

L(u, x, t) = −∂x f (u) + g(u, x). (3)

In the ENO and WENO schemes for the time integration in (2) a TVD Runge–Kutta-type
method is applied [23].

Furthermore, if an approximation ui, i = 0, . . . , N , to the solution u at any time t is
known, the numerical approximation Li, i = 0, . . . , N , is found as

Li = − 1

�x

(
f i+1/2 − f i−1/2

)+ gi . (4)

Here a space discretization with cells [xi−1/2, xi+1/2], i = 0, . . . , N , of uniform width �x is
assumed and the notation f i+1/2, i = 0, . . . , N − 1, for the numerical flux at the (i + 1/2)th
cell boundary and gi , i = 0, . . . , N , for the numerical source term in the i th cell is used.
We must point out that finite difference WENO schemes of third-order accuracy or higher
can only be applied to uniform meshes or smoothly varying meshes [20].

In finite difference ENO and WENO schemes the numerical flux f i+1/2, i = 0, . . . ,

N − 1, is computed in the following way. First the local characteristic fields are found, i.e.,
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eigenvalues �
(p)
i+1/2, left eigenvectors l (p)

i+1/2, and right eigenvectors r (p)
i+1/2, p = 1, . . . , m, are

evaluated for the matrix

Ai+1/2 = A
(
ūi+1/2

)
, (5)

which approximates the local Jacobian matrix of the flux. Here m is the number of conser-
vation laws in system (1) and ūi+1/2 is some average value of states ui and ui+1.

Then an ENO or WENO reconstruction algorithm is applied to each characteristic field
component of the numerical flux f i+1/2. Generally, ENO and WENO reconstruction solves
the problem of numerical approximation of a function v± at position xi+1/2, if all the values
v±

k , k = 0, . . . , N , in the cell centers xk , k = 0, . . . , N , are known. Now we present only
three essential facts about ENO and WENO reconstruction (Eqs. (6), (8), and (9)), because
we use them in the paper. The complete presentation of these algorithms can be found in
[1, 7, 8, 12, 13, 19, 21–23].

First, the final result of both the (r + 1)th-order ENO and the (2r + 1)th-order WENO
reconstruction on a uniform mesh of cells can be written as

v±
i+1/2,r =

s±
max∑

s=s±
min

�r,s(v±)
r∑

j=0

a±
r,s, jv

±
i−r+s+ j . (6)

Here the range of indices is bounded with s+
min = 0, s+

max = r or with s−
min = 1, s−

max = r + 1
and v±

k as stated above is the value of the function v± at xk, k = 0, . . . , N . The coefficients
a±

r,s, j , j = 0, . . . , r , s = s±
min, . . . , s±

max, have known values that for example can be found in
[23]. Each weight �r,s(v±), s = s±

min, . . . , s±
max, is computed from some smoothness indicator

that measures smoothness of the function v± over the sth stencil of points

S±
r,s = {xi−r+s, . . . , xi+s}, s = s±

min, . . . , s±
max. (7)

The only difference between the ENO and WENO algorithm is in the evaluation of the
weights. In the ENO reconstruction only one stencil is chosen for the reconstruction; i.e.,
for this stencil the weight is equal to 1 and all the other stencils have zero weight. In the
WENO reconstruction the weight values are distributed more evenly and are normalized,
i.e., the sum of weights is equal to 1. Even more, we can easily see that in both cases

s±
max∑

s=s±
min

�r,s(v±)
r∑

j=0

a±
r,s, j = 1. (8)

This is the second fact that we want to emphasize. The last fact regarding ENO and WENO
reconstructions that we need is that values of the weights do not change if any constant
value is added to the function; i.e.,

�r,s(v± + const.) = �r,s(v±), s = s±
min, . . . , s±

max. (9)

In the ENO reconstruction the choice of stencil is based on divided differences from
first order up, and in the WENO reconstruction smoothness indicators use only deriva-
tives of the interpolation polynomial from first order up. This can all be easily verified in
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Refs. [1, 7, 8, 12, 13, 19, 21–23] and it is a logical property of the weights since smoothness
of a function does not change with translation.

Now, we can explain how the ENO or WENO reconstruction algorithms can be applied
to the evaluation of the numerical flux. Actually we present the LLF and the RF versions of
the ENO and WENO scheme in a form that is not common; i.e., in the next two subsections
we present the transition from the classical to the formulation we need. The advantages of
the reformulations become clear in Sections 3 and 4.

2.1. LLF Flux Formulations

In the ENO-LLF and WENO-LLF schemes, in order to numerically approximate the
flux component for each (i + 1/2)th cell boundary and each pth characteristic field two
functions v± are defined by

v± = 1

2

(
f ± �

(p)
i+1/2u

)· l (p)
i+1/2, (10)

where �
(p)
i+1/2 is a numerical approximation for the max[xi ,xi+1]|�(p)|; for example

�
(p)
i+1/2 = max

(∣∣�(p)
i

∣∣, ∣∣�(p)
i+1

∣∣, ∣∣�(p)
i+1/2

∣∣). (11)

Here �
(p)
i = �(p)(ui ). Then values v±

i+1/2,r are computed using the (r + 1)th-order ENO or
the (2r + 1)th-order WENO reconstruction, i.e., as given with (6), and the flux component
is set to

f (p)
i+1/2 = v+

i+1/2,r + v−
i+1/2,r . (12)

We want to note that obviously the functions v± depend on the cell boundary and on the
local characteristic field. However, we do not add subscripts i + 1/2 and p to its names in
(10) in order to diminish the total number of subscripts and to make clearer the application
of ENO or WENO reconstruction algorithm. We use similar abbreviations in the next sec-
tions too.

Now we want to reformulate these expressions in order to prepare the balancing we
present in Section 3. In fact we can relate the building blocks (10) of the LLF formulation
with the numerical flux component of the Q-schemes

f (p)
i+1/2 = 1

2

(
( f i + f i+1) − ∣∣�(p)

i+1/2

∣∣(ui+1 − ui )
)· l (p)

i+1/2 (13)

if instead of (11) we take

�
(p)
i+1/2 = ∣∣�(p)

i+1/2

∣∣. (14)

Using this we can rewrite (12) as

f (p)
i+1/2 = 1

2

(
( f i + f i+1) − �

(p)
i+1/2(ui+1 − ui )

)· l (p)
i+1/2

+
(

v+
i+1/2,r − 1

2

(
f i + �

(p)
i+1/2ui

)· l (p)
i+1/2

)

+
(

v−
i+1/2,r − 1

2

(
f i+1 − �

(p)
i+1/2ui+1

)· l (p)
i+1/2

)
. (15)
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Then we can introduce two terms P (p)
i+1/2,± for the two expressions in brackets in the second

and third line of (15). From (15) we can see that these terms are actually high-order ENO
or WENO corrections of the first-order Q-scheme. If we now use (6) and (8) we find that

P (p)
i+1/2,± =

s±
max∑

s=s±
min

r∑
j=0

�r,s(v±)a±
r,s, j v̂

±
i−r+s+ j , (16)

with new functions v̂± defined as

v̂± = 1

2

((
f ± �

(p)
i+1/2u

)− ( f I ± ± �
(p)
i+1/2uI ±

))· l (p)
i+1/2. (17)

Here we introduce

I + = i, I − = i + 1. (18)

We can see that functions v± and v̂± differ only by a constant value. Now (9) leads to

�r,s(v±) = �r,s(v̂±), s = s±
min, . . . , s±

max, (19)

so P (p)
i+1/2,± are exactly ENO or WENO reconstructions for functions v̂±.

With this we obtain the equivalent form of the LLF algorithm that can be finally written as
follows. The ENO-LLF and WENO-LLF numerical approximation for the flux component
for each (i + 1/2)th cell boundary and each pth characteristic field is

f (p)
i+1/2 = 1

2

(
( f i + f i+1) − �

(p)
i+1/2(ui+1 − ui )

)· l (p)
i+1/2 + P (p)

i+1/2,+ + P (p)
i+1/2,−, (20)

P (p)
i+1/2,± =

s±
max∑

s=s±
min

r∑
j=0

�r,s(v̂±)a±
r,s, j v̂

±
i−r+s+ j , (21)

with functions v̂± as defined in (17).

2.2. RF Flux Formulations

In the RF algorithm the entropy fix is applied for the flux component at the (i + 1/2)th
cell boundary and in the pth characteristic field if the eigenvalue changes sign, i.e., if
�

(p)
i �

(p)
i+1 ≤ 0. In this case the entropy fix consists of applying the LLF formulation that we

already stated and reformulated. So in this subsection we concentrate only on the pure Roe
formulation. We emphasize that in the RF formulation it is applied only if �

(p)
i �

(p)
i+1 > 0.

In the Roe formulation the numerical approximation of the flux component for each
(i + 1/2)th cell boundary and each pth characteristic field is equal to the sum of the ENO
or WENO reconstruction at xi+1/2 of two functions

v± = 1 ± sgn
(
�

(p)
i+1/2

)
2

f · l (p)
i+1/2. (22)
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We again reformulate this algorithm in order to prepare it for the balancing. Particularly
we can associate the building block (22) with the simple upwind scheme

f (p)
i+1/2 =




f i · l (p)
i+1/2 if �

(p)
i+1/2 > 0

f i+1 · l (p)
i+1/2 otherwise.

(23)

Now with a sequence of arguments similar to that for the LLF case, which we here omit,
we can find the needed reformulation. The final result is that the ENO-Roe or WENO-Roe
numerical approximation for the flux component for each (i + 1/2)th cell boundary and
each pth characteristic field is given by

f (p)
i+1/2 =




f i · l (p)
i+1/2 + P (p)

i+1/2,+ if �
(p)
i+1/2 > 0

f i+1 · l (p)
i+1/2 + P (p)

i+1/2,− otherwise,
(24)

with P (p)
i+1/2,± defined with (21), but not for functions v̂± defined with

v̂± = 1 ± sgn
(
�

(p)
i+1/2

)
2

( f − f I ± ) · l (p)
i+1/2, (25)

instead of (17).

3. BALANCING OF THE FLUX GRADIENT AND THE SOURCE TERM

In this section we propose a modification of the ENO and WENO schemes. This modi-
fication has no effect if the hyperbolic conservation law system is homogeneous, but when
the source term is present it affects the numerical approximation of the flux and not just of
the source term. It is based on the idea of balancing the flux gradient and the source term
[3], and its final formulation depends on the conservation law system to which it is applied.

From now on the ENO and WENO schemes with the flux evaluated as described in
Section 2 and the source term evaluated pointwise we call the ENO and WENO schemes
with source term added, while we refer to the modified schemes as the ENO and WENO
schemes with source term decomposed.

3.1. LLF Formulation with Source Term Decomposed

In Q-schemes of Bermùdez and Vázquez the balancing between the flux gradient and
source term is obtained by using (13) for the numerical flux, by decomposing the source
term

g(p)
i = g(p)

i+1/2,L + g(p)
i−1/2,R, (26)

and by applying upwinding to the decomposed parts

g(p)
i+1/2,L = 1 − sgn

(
�

(p)
i+1/2

)
2�x

G(ui, ui+1, xi, xi+1) · l (p)
i+1/2, (27)

g(p)
i+1/2,R = 1 + sgn

(
�

(p)
i+1/2

)
2�x

G(ui, ui+1, xi, xi+1) · l (p)
i+1/2. (28)
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Here the function G(u′, u′′, x ′, x ′′) is constructed from the source term of the conservation
law and its formulation is crucial for the balancing [2, 3]. We give the shallow water case
as well as some general idea about its construction in the Section 4.

If we look at our reformulation (20) of the LLF algorithm we can see that it contains the
Q-scheme part that can obviously be balanced with (26)–(28), but also the ENO or WENO re-
construction terms P (p)

i+1/2,± that need additional balancing. In order to achieve this we intro-
duce new terms Q(p)

i+1/2,± and propose substituting (27) and (28) with

g(p)
i+1/2,L = 1 − sgn

(
�

(p)
i+1/2

)
2�x

G(ui, ui+1, xi, xi+1) · l (p)
i+1/2 + 1

�x
Q(p)

i+1/2,+ + 1

�x
Q(p)

i+1/2,−,

(29)

g(p)
i+1/2,R = 1 + sgn

(
�

(p)
i+1/2

)
2�x

G(ui, ui+1, xi, xi+1) · l (p)
i+1/2 − 1

�x
Q(p)

i+1/2,+ − 1

�x
Q(p)

i+1/2,−.

(30)

We must emphasize that definitions (29) and (30) (and later (34) and (35)) bound the
developed algorithm exclusively to uniform meshes.

Only examination of the definition (21) of the terms P (p)
i+1/2,± can lead us to the neces-

sary definition of the terms Q(p)
i+1/2,±. We propose using an expression similar to (21); we

propose even more using the same weights for P (p)
i+1/2,± and for Q(p)

i+1/2,± and in this way
reducing the problem of balancing to the balancing between the functions v̂± for flux with
some appropriately defined functions ŵ± for the source term. Definition (17) now shows
the second advantage of our reformulation of the standard LLF algorithm. Since in the
conservation law the balance is between the source and the flux gradient, the numerical
method can preserve this property by creating balance between the numerical source and
the finite difference of the numerical flux. Our functions v̂± already contain differences of
fluxes so they can be easily balanced if we define the new functions ŵ±

ŵ± = 1

2

(
G(uI ±, u, xI ±, x) ± sgn

(
�

(p)
i+1/2

)
�i+1/2 Z(uI ±, u, xI ±, x)

)· l (p)
i+1/2. (31)

Here the expressions for term �i+1/2 and for the function Z(u′, u′′, x ′, x ′′) are also conser-
vation law dependent and we describe their construction in Section 4.

Now we are left with only one problem to solve: the weights of the stencils. We know that
they are derived from the smoothness indicators and their purpose is to diminish influence
of the stencils over which the flux is less smooth. But if the reason for the lower smoothness
is in the source term and if it is actually balanced with it, then it is wrong to give to such
a stencil a smaller weight value. So, we propose evaluating weights from the difference
v̂± − ŵ±. This finally leads us to the new definitions for P (p)

i+1/2,± and Q(p)
i+1/2,±:

P (p)
i+1/2,± =

s±
max∑

s=s±
min

r∑
j=0

�r,s(v̂± − ŵ±)a±
r,s, j v̂

±
i−r+s+ j, (32)

Q(p)
i+1/2,± =

s±
max∑

s=s±
min

r∑
j=0

�r,s(v̂± − ŵ±)a±
r,s, j ŵ

±
i−r+s+ j. (33)
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It is important to notice that in (4) the difference P (p)
i+1/2,± − Q(p)

i+1/2,± appears, which is
exactly the ENO or WENO reconstruction for v̂± − ŵ±.

3.2. RF Formulation with Source Term Decomposed

Here again, as in Section 2.2, since the entropy fix means application of LLF formulation
if �

(p)
i �

(p)
i+1 ≤ 0 we concentrate only on the pure Roe formulation.

It is easy to verify that the simple upwind scheme (23) can also be balanced with (27)
and (28). So, completely analogous thinking, as in the LLF case, leads us to the new Roe
algorithm: define flux with (24), (25), and (32), and define the source term with (26),

g(p)
i+1/2,L = 1 − sgn

(
�

(p)
i+1/2

)
2�x

G(ui, ui+1, xi, xi+1) · l (p)
i+1/2 + 1

�x
Q(p)

i+1/2,+, (34)

g(p)
i+1/2,R = 1 + sgn

(
�

(p)
i+1/2

)
2�x

G(ui, ui+1, xi, xi+1) · l (p)
i+1/2 − 1

�x
Q(p)

i+1/2,−, (35)

and (33) where functions ŵ± are now defined as

ŵ± = 1 ± sgn
(
�

(p)
i+1/2

)
2

G(uI ±, u, xI ±, x) · l (p)
i+1/2. (36)

4. APPLICATION TO THE SHALLOW WATER EQUATIONS

In this section we apply the algorithm developed in Section 3 to one-dimensional shallow
water equations, give a brief idea of the almost straightforward extension to multidimen-
sion, particularly two-dimensional shallow water equations, and emphasize the limitation
regarding the application to conservation laws with spatially dependent fluxes.

One case of the hyperbolic conservation laws system (1) with

u =
(

h

hv

)
, f =

(
hv

hv2 + 1
2 gh2

)
, and g =

(
0

gh
(− dz

dx − M2v|v|
h4/3

)
)

(37)

is the one-dimensional St. Venant equations system, i.e., the one-dimensional shallow water
equations. Here h = h(x, t) is the water depth, v = v(x, t) is the water velocity, g is the
acceleration due to gravity, z = z(x) is the bed level, and M = M(x) is the Manning’s
friction factor.

According to previous sections now we need to choose the average value ūi+1/2 in (5)
and define terms G(u′, u′′, x ′, x ′′), Z(u′, u′′, x ′, x ′′), and �i+1/2. We take

ūi+1/2 = ui + ui+1

2
. (38)

The verification of the exact C-property depends on this particular choice, as it will be
shown.

Furthermore, since the part of the source term concerning friction forces does not produce
numerical difficulties when evaluated pointwise, we apply decomposition only to the part
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of the source term due to gravitational forces ( 0
−gh dz

dx

) and we evaluate the friction term
( 0

−gh M2v|v|
h4/3

) pointwise.

The formulations for G(u′, u′′, x ′, x ′′), Z(u′, u′′, x ′, x ′′), and �i+1/2 that we introduce are

G(u′, u′′, x ′, x ′′) =
(

0

−g h′ + h′′
2 (z(x ′′) − z(x ′))

)
, (39)

Z(u′, u′′, x ′, x ′′) =
(

0

−(z(x ′′) − z(x ′))

)
, (40)

�i+1/2 = gh̄i+1/2. (41)

A general idea about this construction is as follows. In order to get G(u′, u′′, x ′, x ′′) the
gradient of some geometrical property that appears in the source term should be substituted
with its finite difference, and the state variables with the same average values that are
used for the computation of the local characteristic field. Furthermore, term �i+1/2 must
create balance with term �

(p)
i+1/2, and function Z(u′, u′′, x ′, x ′′) should contain only the finite

difference of the geometrical property.
Now, we can discuss possible other applications of the algorithm. One extension of

the one-dimensional shallow water equations, (1) and (37), is the one-dimensional shallow
water equations in channels with irregular geometry [9, 25]. Particularly for an open channel
with variable breadth and a locally rectangular cross section these equations are obtained
by placing

u =
(

Bh

Bhv

)
, f =

(
Bhv

Bhv2 + 1
2 gBh2

)
, and

(42)

g =
(

0
1
2 gh2 dB

dx + gBh
(
− dz

dx − M2v|v|
R4/3

h

))

in (1). Here the notation is the same as in (37) with an additional B = B(x) for the channel
breadth and Rh for the hydraulic radius. However, an application of the approach presented
in Section 3 is not possible. We must notice that the flux term in (42) is spatially dependent,
i.e., f = f (u, x), since it contains explicit dependency on the space variable through the
channel breadth term. The locally Lax–Friedrichs and Roe formulation used for the flux
in ENO and WENO schemes are not appropriate for spatially dependent fluxes. So an
extension of the proposed approach would be needed, beginning with a modification of the
numerical approximation for the flux, and only then could a balancing between the flux
gradient and the source term be applied. Some preliminary results we have show that this
can be done but an adequate algorithm differs so much from the one presented in Sections 2
and 3 that its presentation goes beyond the scope of this paper.

A quite simple extension of the presented algorithm to multidimensions can be done if
the hyperbolic conservation law system is of the form

∂t u +
d∑

k=1

∂xk f k(u) =
d∑

k=1

gk(u, x), (43)

i.e., if the source term can be written as a sum of terms of which each balances the
flux gradient in the appropriate direction. Here d is the number of space dimensions, and
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x = (x1, . . . , xd ) is the space variable. For example two-dimensional shallow water equa-
tions without friction are of the form (43) with

u =

 h

hv1

hv2


, f 1 =




hv1

hv2
1 + 1

2 gh2

hv1v2


, f 2 =




hv2

hv1v2

hv2
2 + 1

2 gh2


, (44a)

g1 =




0

−gh ∂z
∂x1

0


, and g2 =




0
0

−gh ∂z
∂x2


. (44b)

Here h = h(x, t) is the water depth, v = (v1(x, t), v2(x, t)) is the water velocity, g is the
acceleration due to gravity, and z = z(x) is the bed level. In that case we can apply the
algorithm of Section 3 to each direction separately, i.e., to each pair f k , gk . This is consistent
with the usual strategy in ENO and WENO schemes when applied to multidimensional
problems ([1, 7, 8, 12, 13, 19, 21–23]). However, this extension has several drawbacks in
practical computations since it results in a finite difference method that can be applied only
to uniform meshes and since higher order ENO and WENO schemes with the source term
decomposed in multidimension are certainly very computationally expensive.

Another class of conservation laws to which proposed schemes might be applicable
includes Euler equations with stiff source terms. Particularly this is true for nozzle flow
equations since in that conservation law system the cross-section area of the nozzle through
which ideal gas flows has a function analogous to the channel width in the open channel
flow equations for a channel with variable width and rectangular cross section (42). There
is also the possibility of application to chemically reactive Euler equations [11]. However,
further investigation is needed in order to achieve results in those cases and very likely some
extensions of the presented algorithms will be necessary.

Since with this we presented the algorithms of the new schemes, we can now discuss the
similarities and differences with several other schemes.

Another scheme that is based on the Q-schemes of Bermùdez and Vázquez is the flux
limited scheme with source term decomposed of Hubbard and Garcia-Navarro [9]. The
difference consists of the fact that there, high resolution is obtained through a flux limiting
technique instead of through ENO or WENO reconstruction. Therefore the flux limited
schemes are of second-order accuracy, while these schemes achieve higher orders (test
problem in Section 6.1).

Comparison with LeVeque’s quasi-steady wave propagation algorithm [16, 17] gives the
following conclusions. The here-proposed schemes, just like the Q-scheme, decomposes
the source term from cell center to cell boundaries and in a way “mimics” the discretization
of the flux term. On the other hand LeVeque introduces an additional Riemann problem
at each cell center and obtains balance by implying that its flux difference must exactly
cancel the source term. In particular, if we compare the approximate Riemann solvers in
the homogenous case, we can see that the Q-scheme with the Roe average and LeVeque’s
scheme are equivalent. In the case of linear systems with the source term present these
two schemes also coincide. The similarity lies also in the applicability of the compared
schemes to the same group of conservation laws, i.e., those with geometrical source terms,
particularly to shallowwater equations. The difference is that for those conservation laws the
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Q-scheme and our ENO and WENO extensions have the exact C-property, while LeVeque’s
scheme has the approximate C-property.

Further comparison can be done with Jenny and Müller’s Rankine–Hugoniot–Riemann
solver [11]. The similarity is in the viewing of the source term as concentrated at cell
boundaries, i.e., in applying upwinding to source terms. The difference is in the solver; they
use a characteristic-based Rankine–Hugoniot–Riemann solver. Also, since these authors
apply their scheme to reacting flows they do not deal with geometrical dependences in
the source term and therefore for their scheme the notion of the exact C-property is not
relevant.

Particularly interesting is the comparison with Smolarkiewicz’s MPDATA schemes. On
one level the difference is in the treatment of the flux term. Our schemes inherit it from
ENO and WENO schemes, which emphasize the nonoscillatory polynomial reconstruction,
while MPDATA are advection algorithms that achieve high order through iterative extension
of the donor cell schemes. The second level is the numerical modeling of the source term.
Obviously this is the main concern of our new algorithm and it consists of the implementation
of the flux gradient source term balancing in ENO and WENO schemes. In the MPDATA
schemes there are two important things to be noticed regarding this problem. First is that
state-of-the-art MPADATA schemes improve on the time truncation error due to right-hand
side numerical modeling, which can be interpreted as integration of the right-hand side
along the particle path instead of a central-in-time evaluation. But what is particularly
interesting to observe is its application to shallow water models. As we can see in [24],
if the model of the shallow fluid on sphere is simplified to a shallow water model with
noncurvilinear coordinates the MPDATA schemes have the exact C-property. Actually,
in order to apply the advection algorithm approach in these schemes the shallow water
equations are not written as in (37); i.e., the term 1

2 gh2 is placed not in the flux but on the
right-hand side, which therefore contains the spatial derivative of the water level instead
of the bed alone. This leads straightforwardly to verification of the exact C-property of the
MPDATA schemes.

Finally, some analogy can be found also in comparison to the surface gradient method
developed by Zhou et al. [26]. In fact, even if they use pointwise evaluation of the source
term Zhou et al. obtain a well-balanced scheme since for the computation of the linearly
extrapolated states on the cell interfaces they use water level gradient instead of elevation
gradient. In our algorithm the choice of stencil weights in (32) and (33) follows funda-
mentally the same idea—the weights indirectly measure discontinuities in the water level
instead of discontinuities in the elevation.

5. EXACT CONSERVATION PROPERTY FOR SHALLOW WATER EQUATIONS

The definition of the exact conservation property of a numerical scheme for shallow water
equations as given in [2, 3] is the following: a scheme is said to satisfy the exact C-property
if it is exactly compatible with the quiescent steady-state solution

h + z = H = const. and v = 0. (45)

In this section we prove that the ENO and WENO schemes with the source term de-
composed, as proposed in Section 3 together with the relations (38)–(41), when applied to
the one-dimensional shallow water equations, have this exact C-property. The proof for the



ENO/WENO SCHEMES WITH EXACT C-PROPERTY 605

two-dimensional case is completely analogous, so we omit it. We also discuss the order of
accuracy of the new schemes.

First we observe that in the case of the quiescent steady-state solution, the flux and the
source term reduce to

f =
(

0
1
2 gh2

)
, g =

(
0

−gh dz
dx

)
, (46)

while eigenvalues and right and left eigenvectors reduce to

�(p) = (−1)pc, r (p) =
(

1

(−1)pc

)
, l (p) = 1

2c

(
c

(−1)p

)
, p = 1, 2, (47)

where c = √
gh. The proof of the exact C-property consists of demonstrating that if con-

dition (45) is valid, then Li = 0, i = 0, . . . , N. According to our construction of the new
schemes in Section 3, it is obvious that verification of the exact C-property depends only
on verifying whether

v̂±
k − ŵ±

k = 0, k = 0, . . . , N (48)

is true under quiescent flow conditions (45). Now we study the two schemes separately.

5.1. Exact C-Property of the LLF Formulation with Source Term Decomposed

For the LLF formulation, first we can compute the part

( f k − f I ± ) − G(uI ± , uk, xI ± , xk) =
(

0
1
2 gh2

k − 1
2 gh2

I ±

)
−
(

0

−g hI± + hk

2 (zk − zI ± )

)
(49)

of v̂±
k − ŵ±

k , and this becomes

( f k − f I ± ) − G(uI ± , uk, xI ± , xk) =
(

0
g hI± + hk

2 (Hk − HI ±)

)
= 0 (50)

in the quiescent flow case.
Second, let us observe that for the quiescent flow

�
(p)
i+1/2 = ∣∣�(p)

i+1/2

∣∣ = c̄i+1/2, (51)

sgn
(
�

(p)
i+1/2

)
�i+1/2 = (−1)pc̄2

i+1/2; (52)

so, simple computation for the second part of v̂±
k − ŵ±

k ,

(
�

(p)
i+1/2(uk − uI ±) − sgn

(
�

(p)
i+1/2

)
�i+1/2 Z(uI ± , uk, xI ± , xk)

)· l (p)
i+1/2

= 1

2c̄i+1/2

((
c̄i+1/2(hk − hI ±)

0

)
−
(

0

−(−1)pc̄2
i+1/2(zk − zI ±)

))
·
(

c̄i+1/2

(−1)p

)
, (53)
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gives us that under (45)

(
�

(p)
i+1/2(uk − uI ± ) − sgn

(
�

(p)
i+1/2

)
�i+1/2 Z(uI ± , uk, xI ± , xk)

)· l (p)
i+1/2

= c̄i+1/2

2
(Hk − HI ± ) = 0. (54)

So, (48) is a direct consequence of (50) and (54). This proves the exact C-property for the
new ENO-LLF and WENO-LLF schemes.

At this point the question of how well the approach works for flows away from the
quiescent steady states arises. Of course we cannot expect a numerical scheme to be exact
in the general case, particularly not for the nonsteady case. However, in the case of the
nonquiescent steady state the right-hand side in (2) should also be zero, just as in the
quiescent case. In particular, analytical integration of the one-dimensional shallow water
equations leads us to the relations

q = const. and
1

2

q2

h2
+ g(h + z) = const., (55)

where q = hv is the unit discharge. Computations completely analogous to those for the
quiescent state, but with the application of (55) instead of (45), give us

(( f k − f I ± ) − G(uI ± , uk, xI ± , xk)) · l (p)
i+1/2 = (−1)p+1

2c̄i+1/2

q2

2h2
kh2

I ±
(hk − hI ± )3 (56)

and

(
�

(p)
i+1/2(uk − uI ± ) − sgn

(
�

(p)
i+1/2

)
�i+1/2 Z(uI ± , uk, xI ± , xk)

)· l (p)
i+1/2

= (−1)p+1

c̄i+1/2
sgn
(
�

(p)
i+1/2

)( q2

h̄2
i+1/2

+ q2h̄i+1/2

h2
kh2

I ±

hk + hI ±

2

)
(hk − hI ±). (57)

Equations (56) and (57) show that the proposed ENO-LLF and WENO-LLF schemes with
source term decomposed do not exactly conserve the nonquiescent steady states. The same
is also true for the Q-schemes.

However we must point out that only few numerical schemes verify the exact C-property
and that numerical experiments (Section 6) show very good results on the flows away from
the quiescent case, too. The inclusion of the friction term would additionally complicate the
analysis and possible improvements in the schemes regarding the balance for any steady
state and with nonzero friction require further study.

5.2. Exact C-Property of the RF Formulation with Source Term Decomposed

The same arguments as in the case of the LLF formulations with source term decomposed
and the already computed relation (50), valid under quiescent flow conditions (45), lead to
(48). So again the exact C-property is verified.

We want to point out here that the proofs of the exact C-property for both cases depend
on the choice of the average state evaluation (38). In fact if the Roe average was used only
approximate C-property of order 2 could be verified [2, 3].

Again, we can compute what happens in the nonquiescent steady-state case. In this
algorithm only term (56) appears so ENO-RF and WENO-RF schemes with source term
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decomposed also exactly conserve only the quiescent flow and only approximately the
nonquiescent steady states.

5.3. Order of Accuracy

In this section we make a few observations regarding the order of accuracy of the new
schemes. In particular, let us assume that the solution and the bed slope are smooth enough
functions. Then, Rth-order accuracy of the ENO or WENO reconstruction and relations
(32) and (33) lead to

P (p)
i+1/2,± = v̂±(xi+1/2

)+ O(�x R), (58)

Q(p)
i+1/2,± = ŵ±(xi+1/2

)+ O(�x R), (59)

with R = r + 1 in the ENO and R = 2r + 1 in the WENO case. In the case of the new LLF
algorithms (Section 3.1), Eq. (58) after some simple computation leads to

f (p)
i+1/2 = f ∗

i+1/2 · l (p)
i+1/2 + O(�x R). (60)

Here f ∗
i+1/2 denotes the exact value of the flux at xi+1/2. Similarly, in the case of the new

RF algorithms (Section 3.2), (60) is also valid. Thus, the modifications in the algorithm
that we introduced do not change the order of the ENO or WENO reconstruction algorithm
with respect to the flux term.

When the source term is evaluated pointwise it means that it is exactly evaluated at the cell
center so the order of accuracy in the space discretization of WENO schemes is preserved.
But in the case of the one-dimensional shallow water equations the source term contains
the part due to gravity and the term dz

dx appears. Typically z = z(x) is the known function
and in the artificial test problems it can be given as an analytical function so its derivative
can be exactly evaluated. But when it is the bed of a natural watercourse z = z(x) is known
through a discrete set of data obtained by measurements. So the problem of evaluating dz

dx
numerically must be faced and then pointwise evaluation can only mean a first- or second-
order-accurate numerical derivative. Since any numerical derivative z = z(x) involves some
stencil of points, if the stencil is different from the one used to evaluate the flux in the
WENO algorithm or if it is not used with appropriate coefficients the balance between the
flux gradient and the source term that is present in the observed physical phenomenon and
included in the governing conservation law equations is lost. Only some algorithm that
respects this balancing can improve the numerical accuracy and remove numerical errors
otherwise present. And this is exactly what is achieved in our algorithm for the ENO and
WENO schemes.

6. NUMERICAL RESULTS

In this section we present numerical results for several test problems for the one-
dimensional shallow water equations (37). In the computation we apply ENO and WENO
schemes with source term decomposed and source term added as we propose them here,
as well as Q-schemes of Bermùdez and Vázquez [3] and the flux limited schemes with
source term decomposed [9]. In all the computations we chose the time and the space
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step according to CFL conditions as well as with the stability conditions given in [3], since
the presence of the source term affects the stability of the scheme.

6.1. A Convergency Test

The purpose of the first test problem is to numerically test the order of accuracy of
the proposed schemes. Since the ENO and WENO schemes when applied to homogenous
hyperbolic conservation laws with smooth solutions have high order of accuracy, it is
important to see if and how this is modified in the presence of the source term due to the
proposed extension of the schemes.

In this convergency test problem the smooth bed is given by

z(x) = 0.2 · e−( 2
5 (x−10))2

, x ∈ [0, 20], (61)

the friction is zero, and the initial condition is the steady subcritical flow with the unit
discharge hv(x, 0) = 4.42 m2/s (Fig. 1). This steady state should be preserved. We know
the exact solution since it can be computed using (55). We present results for t = 50 s
computed with the new ENO-LLF and WENO-LLF schemes, with r = 1–5. Similar re-
sults are valid also for the RF formulations. In all the computations we apply the CFL
coefficient ccfl = 0.7. While for r = 1 and 2 we apply a two-step Runge–Kutta time in-
tegration, for r = 3–5 we use a three-step Runge–Kutta time integration. The experi-
mentally established errors and orders for this steady-state flow with smooth bed and
solution are given in Table I. Regarding both ENO-LLF and WENO-LLF decomposed
schemes we can conclude that they do not achieve the expected formal order but how-
ever show a significantly higher order of accuracy in comparison to first- and second-
order schemes. The cause of the observed problems and possible remedies require further
study.
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FIG. 1. The exact water level and bed for the steady subcritical flow over a smooth bump (test problem in
Section 6.1).
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TABLE I

The Convergency Test Results (Test Problem in Section 6.1)

ENO-LLF decomposed WENO-LLF decomposed
Number

r of cells L1 error L1 order L1 error L1 order

1 20 5.1518 × 10−4 6.1241 × 10−4

40 1.2691 × 10−4 2.02 2.9003 × 10−4 1.08
80 3.1526 × 10−5 2.01 4.4874 × 10−5 2.69

160 7.8921 × 10−6 2.00 1.3304 × 10−5 1.75
320 1.9332 × 10−6 2.03 2.3394 × 10−6 2.51

2 20 7.1908 × 10−3 7.9906 × 10−3

40 1.5424 × 10−3 2.22 2.6076 × 10−3 1.62
80 3.4132 × 10−4 2.18 1.7996 × 10−4 3.86

160 8.5251 × 10−5 2.00 7.6440 × 10−6 4.56
320 1.9682 × 10−5 2.11 4.3585 × 10−7 4.13

3 20 1.2647 × 10−2 1.1246 × 10−2

40 3.9869 × 10−3 1.67 1.4051 × 10−3 3.00
80 6.4950 × 10−4 2.62 1.5264 × 10−4 3.20

160 1.2185 × 10−4 2.41 6.6217 × 10−6 4.53
320 1.6265 × 10−5 2.91 1.8550 × 10−7 5.16

4 20 2.0538 × 10−2 6.7279 × 10−3

40 4.0899 × 10−3 2.33 5.5028 × 10−4 3.61
80 5.8143 × 10−4 2.81 2.2359 × 10−5 4.62

160 8.4721 × 10−5 2.78 1.5945 × 10−6 3.81
320 1.3918 × 10−5 2.61 7.8490 × 10−8 4.34

5 20 3.1595 × 10−2 4.0166 × 10−3

40 1.9081 × 10−3 4.05 2.2235 × 10−4 4.18
80 4.4742 × 10−4 2.10 2.4784 × 10−5 3.17

160 7.5055 × 10−5 2.58 7.7136 × 10−7 5.01
320 1.9801 × 10−6 5.24 1.1783 × 10−8 6.03

6.2. The Quiescent Flow and a Tidal Wave Propagation over the Bed Proposed
by the Working Group on Dam Break Modeling

In this test problem we use the geometry of the bed that was proposed by the working
group on dam break modeling, as described in [9, 25]. The bed slope is discontinuous, so
this test problem is a good illustration of the significance of the source term decomposition
for practical applications to natural watercourses. The values of the bed level are given in
[25] and can be seen in Fig. 2, while the friction factor is set to M = 0.1. We observe two
flows:

(a) the quiescent steady-state (45) with water level H = 10 m and
(b) a tidal wave propagation, where a tidal wave is incoming from the upstream end,

h(0, t) = 16 + 4 sin

(
(t − 10800)�

21600

)
, (62)

and a wall is positioned at the downstream boundary, as described in [3]. In both cases we
apply the space step �x = 2.5 m and the CFL coefficient ccfl = 0.8.
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FIG. 2. The bed for the quiescent flow as proposed by the working group on dam break modeling (test problem
in Section 6.2).

In case (a) we perform computations using Q-schemes of Bermùdez and Vázquez [3],
flux limited schemes with source term decomposed [9], and ENO-RF and WENO-RF with
source term added and with source term decomposed. All the ENO and WENO schemes
we test in a low-order variant, i.e., with a two-step Runge–Kutta-type time integration and
with r = 1, as well as in a high order variant, i.e., with a three-step Runge–Kutta-type
time integration and with r = 5. In Table II we present L∞ error in the water level and
in the velocity for all the schemes. Values clearly indicate the effect of the source term
decomposition since the nondecomposed schemes present an unacceptably high L∞ error.

In case (b) we also tested all the mentioned schemes but since errors and accuracy
are consistent with the results presented in Table II, we give only numerical results after
t = 10,800 s for the WENO-RF schemes shown in Fig. 3.

TABLE II

The L∞ Error for the Quiescent Flow as Proposed by the Working Group on Dam Break

Modeling (Test Problem (a) in Section 6.2)

Method L∞ error in water level L∞ error in velocity

Q-scheme Less then 10−20 1.480 × 10−14

Flux limited scheme Less then 10−20 5.942 × 10−15

ENO-RF, r = 1, added 5.291 × 10−2 2.867 × 10−1

ENO-RF, r = 1, decomposed Less then 10−20 1.222 × 10−14

ENO-RF, r = 5, added 1.668 × 10−1 4.991 × 10−1

ENO-RF, r = 5, decomposed 1.066 × 10−14 2.090 × 10−14

WENO-RF, r = 1, added 5.407 × 10−2 2.667 × 10−1

WENO-RF, r = 1, decomposed 1.954 × 10−14 4.052 × 10−14

WENO-RF, r = 5, added 8.187 × 10−2 1.622 × 10−1

WENO-RF, r = 5, decomposed 6.040 × 10−14 1.010 × 10−13
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FIG. 3. Comparison of the WENO-RF, r = 5, schemes for the tidal wave propagation over the bed proposed
by the working group on dam break modeling (test problem (b) in Section 6.2). (a) Water level at t = 10800 s;
(b) unit discharge at t = 10800 s.

6.3. The Steady Flow over a Bump

The third test problem covers typical difficulties in the steady shallow water flow, the
smooth transition and the hydraulic jump, so it is important for testing the behavior of the
new schemes.

The bed in this test problem is given by

z(x) =
{

0.2 − 0.05(x − 10)2 if 8 ≤ x ≤ 12

0 otherwise,
(63)
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FIG. 4. The bed with a bump (test problem in Section 6.3).

as it can be seen in Fig. 4 [25], and the manning friction factor is set to zero. We impose
two different sets of steady boundary conditions:

(a) hv(0, t) = 0.18 m2/s and h(0, t) = 0.33 m, which results in a steady transcritical flow
with a smooth transition followed by a hydraulic jump, and

(b) hv(0, t) = 1.53 m2/s, which results in a steady transcritical flow with a smooth tran-
sition.

For both cases we apply the space step �x = 0.125 m and the CFL coefficient ccfl = 0.6.
We apply the Q-scheme of Bermùdez and Vázquez [3], the flux limited schemes with
source term decomposed [9], and WENO-RF and WENO-LLF schemes with three-step
Runge–Kutta-type time integration and with r = 5, with source term added and with source
term decomposed. For all these steady flows exact solutions are known and they are given
in [25].

In Fig. 5 we zoom in on the part of the domain where the hydraulic jump occurs in
order to make differences between the schemes more visible (Fig. 5a) and we also give a
comparison of convergency histories for the applied schemes (Fig. 5b). The global relative
error is defined as in [26], with

R =
√√√√ N∑

i=0

(
hn

i − hn−1
i

hn
i

)2

. (64)

The same comparisons can be observed in Fig. 6 for the smooth transition. Furthermore,
in Table III we give L∞ error in the unit discharge for all the applied schemes since these
are examples with steady flow, so the unit discharge should be constant. In particular,
in case (a) we give error evaluated on the part of the domain upstream from the jump,
since all the tested schemes present the same L∞ error of magnitude 4 × 10−2 at the jump
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FIG. 5. Comparison of the WENO-RF, r = 5, schemes for the hydraulic jump over a bump (test problem
(a) in Section 6.3). (a) Detail over the bump, water level at t = 200 s; (b) convergency history.

and with the inclusion of that singular error the difference between the schemes would
be lost. In both cases we can observe the improvement introduced with the source term
decomposition. The oscillations that occur downstream from the jump are smaller when
WENO schemes of lower order are applied. Also, some very small oscillations appear
for higher order decomposed WENO schemes that are not present in lower order cases.
In our opinion this might be connected with the similar deteriorations in the order of
accuracy for higher order cases, as we experimentally established in the test problem in
Section 6.1, and possibly connected with accumulation of the round-off error. Further study
is needed.
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TABLE III

The L∞ Error in the Unit Discharge for the Steady Flow over a Bump

(Test Problem in Section 6.3)

Method L∞ error for 6.3.a L∞ error for 6.3.b

Q-scheme 4.7 × 10−5 5.3 × 10−4

Flux limited scheme 2.68 × 10−4 4.0 × 10−5

WENO-RF, r = 5, added 1.015 × 10−2 1.72 × 10−2

WENO-RF, r = 5, decomposed 4.0 × 10−6 4.6 × 10−6

WENO-LLF, r = 5, added 1.053 × 10−2 1.556 × 10−2

WENO-LLF, r = 5, decomposed 8.0 × 10−6 1.1 × 10−4
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FIG. 6. Comparison of the WENO-LLF, r = 5, schemes for the steady transcritical flow over a bump (test
problem (b) in Section 6.3). (a) Detail over the bump, water level at t = 200 s; (b) convergency history.
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6.4. A Problem Discussed by LeVeque

This test problem, proposed by LeVeque [16], is a nonstationary flow, with actually
two dam breaks that propagate in opposite directions, and in addition, while the upstream
moving front passes over a horizontal riverbed, the downstream moving front propagates
over a bump. The bed slope is continuous. So with this problem we test scheme performance
on a rapidly varying flow over a smooth bed.

The bed is given with

z(x) =
{

0.25(cos(10�(x − 0.5)) + 1) if 1.4 ≤ x ≤ 1.6

0 otherwise,
(65)

and M = 0. The initial conditions are given with

v(x, 0) = 0 and h(x, 0) =
{

1. + �h − z(x) if 1.1 ≤ x ≤ 1.2

1. − z(x) otherwise,
(66)

where �h is the height of the pulse. We test two cases:

(a) big pulse, i.e., �h = 0.2 (initial condition in Fig. 7), and
(b) small pulse, i.e., �h = 0.001.

Originally, LeVeque solved this test problem with g = 1 m/s2 while we, as in all test prob-
lems in this section, use g = 9.81 m/s2. We preformed all the computations using space
step �x = 0.001 m and the CFL coefficient ccfl = 0.5. In Figs. 8 and 9 we present re-
sults obtained with ENO-RF scheme with a two-step Runge–Kutta time integration and
with r = 1.
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FIG. 7. The initial water level and bed for the problem discussed by LeVeque (test problem (a) in Section 6.4).
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FIG. 8. Comparison of the ENO-RF, r = 1, schemes for the problem discussed by LeVeque with big pulse
(test problem (a) in Section 6.4). Detail over the bump: (a) water level at t = 0.04 s; (b) velocity at t = 0.04 s.

In Fig. 8 we show results for the big pulse and the water level and velocity in the part of
the domain over the bump at time t = 0.04 s. We chose this particular moment because the
downstream-traveling water pulse had not yet reached the bump. So the oscillations that
we observe in the ENO schemes with the source term added are only due to the inability
of that scheme to preserve the quiescent flow. Since the L∞ error is around 10−5 for the
water level and around 10−4 for the velocity the difference between the ENO schemes
with the source term added and ENO schemes with the source term decomposed is not
visible after the big pulse passes over the bump. In fact since in this test problem the bed
depth is artificial and smoothly changing and the dominant effect is the pulse splitting
and moving, even the ENO schemes with source term added give, on the global scale,
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satisfying results. In [10] we can see results for the same test problem tested with several
other schemes, and observe that for some other schemes the nondecomposed version does
not work as well. So we can conclude that if the scheme is accurate enough, the bed
level is smooth, and the flow is rapidly varying, the source decomposition might not be
that important. In [16] LeVeque gives a similar observation. However, this is only due to
the fact that in these cases the error due to the source term pointwise evaluation is much
smaller then the flow perturbation and it cannot be registered. Actually, in case (b) of the
small pulse the same perturbation structure caused by the numerical error in the evaluation
of the source term can be clearly observed even after the pulse passes over the bump
(Fig. 9).
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FIG. 9. Comparison of the ENO-RF, r = 1, schemes for the problem discussed by LeVeque with small pulse
(test problem (b) in Section 6.4). Detail over the bump: (a) water level at t = 0.2 s; (b) velocity at t = 0.2 s.
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6.5. The Dam Break over the Rectangular Bump

The purpose of the last test problem is to test the new approach in the case of a rapidly
varying flow over discontinuous bed slope. The bed level is given with

z(x) =
{

8 if |x − 1500/2| ≤ 1500/8

0 otherwise,
(67)
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FIG. 10. Water level for the dam break over the rectangular bump (test problem in Section 6.5). (a) WENO-
LLF, r = 5, scheme with source term added; (b) WENO-LLF, r = 5, scheme with source term decomposed; (c) the
flux limited scheme with source term decomposed [8].
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FIG. 10—Continued

the friction is set to M = 0.1, and the initial conditions are

H (x, 0) =
{

20 if x ≤ 750
15 otherwise

and v(x, 0) = 0 m/s. (68)

So, it is a dam break problem over a bed with a rectangular bump exactly under the dam.
In fact this problem is a mixture of test problems in other references. We took the riverbed
from [25] and the idea of observing a dam break on a variable-depth riverbed from [10].

All the computations are performed with the space step �x = 2.5 m and the CFL coef-
ficient ccfl = 0.6. Results are given in Fig. 10. The used WENO-LLF scheme is with r = 5
and a three-step Runge–Kutta time integration. Comparison between Figs. 10a and 10b
clearly illustrates the importance of the introduced decomposition in the WENO schemes
even for rapidly varying flows over a nonsmooth bed. The nondecomposed version gives
very poor results since the magnitude of the numerical error caused by the source term
pointwise evaluation is the same as that of the perturbation in flow caused by the dam
break. This is a consequence of the discontinuous bed slope, which is typical in natural
watercourses. Comparison between Figs. 10b and 10c gives some insight into these and
other schemes; in particular it shows that the new WENO schemes are more accurate and
shock capturing then the second-order flux limited scheme with source term decomposed
[8, 9]. This is inherited from the original ENO and WENO schemes.

7. CONCLUDING REMARKS

The new ENO and WENO schemes with the source term decomposed that we propose in
this paper can be viewed as a natural way to apply the ENO or WENO reconstruction to the
entire right side in (2), i.e., to (3) and not only to the flux term, in the case of conservation
laws with geometrical source terms. The resulting schemes are high resolution, even if
with an order of accuracy apparently reduced in comparison to original ENO and WENO
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schemes for homogeneous systems (test problem in Section 6.1). Also they present better
shock-capturing property when compared with some other upwind schemes (test problem
in Section 6.5). Finally, when applied to the shallow water equations, the new schemes
verify the exact conservation property [2, 3].
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3. A. Bermùdez and M. E. Vázquez, Upwind methods for hyperbolic conservation laws with source terms,
Comput. Fluids 23(8), 1049 (1994).

4. R. Botchorishvilli, B. Pertham, and A. Vasseur, Equilibrium Schemes for Scalar Conservation Laws with
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